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Preface

The content of this textbook is a compilation of my lecture notes used at the Delft 
University of Technology, faculty of Civil Engineering. The topics in this volume are 
Work and energy principles and Influence lines. A vast amount of extensive books have 
been written on these subjects and as a teacher of an undergraduate course in Structural 
Mechanics, I have to focus on the essentials. Over the years I therefore wrote a number 
of notes in which the topics are covered in such a manner that students can study the 
material themselves and prepare the assignments which are discussed in class. Theory 
and application are therefore directly combined and numerous examples are added in 
order to clarify all steps involved. This approach is highly appreciated by students and 
based on the feedback of the students the notes were further improved.  

So far most methods used in the under graduate courses on Structural Mechanics are 
based on direct methods to find the force distribution in structures and or to determine 
the deformations and displacements. Well known classical methods are:
• Equilibrium method to find the force distribution in statically determinate structures,
• Moment-area theorems to compute the deflections,
• Euler Beam theory by solving the fourth order differential equation to find both the 

force distribution and the displacements in statically (in)determinate structures,
• Practical application of engineering equations (forget –me-not’s) which can be found 

by either of the two previous indicated methods to find displacements and or rota-
tions in beam type structures

• Force method to find the force distribution in statically indeterminate structures.
• Displacement method to find the displacements and thus the force distribution in 

statically indeterminate structures.

Next to these methods a host of alternative methods exists based on work and energy 
principles. These lecture notes will introduce these. To understand these methods and 
to see the difference in application it is essential to understand the previous mentioned 
classical methods. An overview of these can be found in the standard study books on 
mechanics such as our own series of books by Hartsuijker and Welleman[3-5]. Although 
all methods described here are from the past and new computer tools based on the 
finite element method will be used in engineering practise, these old methods are still 
important. An advantage of today’s symbolic algebra tools like MAPLE is that solving 
problems with these old styled methods have become much more attractive and give 
more qualitative insight in the solutions. All examples in these notes can therefore easily 
be solved with the use of MAPLE and the reader is urged to do so.

  Preface
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  Overview of topics
The topics are covered in five chapters. In the chapter 1 some introducing remarks are 
made and the concept of work and virtual work is explained. The principle of virtual 
work has been introduced in the first year courses on mechanics and is an alternative 
method to find the force distribution in statically determinate structures. In chapter 2 
the deformation or strain energy is introduced which is used in chapter 3 in finding the 
Castigilano theorem. Chapter 4 describes a more generalised approach based upon the 
principle of minimum potential energy which will be used in approximation methods. 
Chapter 5 introduces the concept of influence lines for both static determinate and 
indeterminate structures. In order to fully understand the concept of an influence line, 
knowledge of work and virtual work is required.

Acknowledgement
I made grateful use of published work of other authors[1-2; 7-10] and (former) colleagues. 
Most of this material was published in Dutch as ‘collegedictaat’ (lecture notes). This 
new collection of notes in English provides both the Dutch and international students 
with a set of notes which will introduce them into the topics of work and energy 
methods with applications on influence lines.
The aim of this book is to present a condensed and comprehensive introduction into 
work and energy methods, and influence lines. This book is not a complete reference but 
primarily meant to introduce the topics to undergraduate students in (civil) engineering. 
With this introduction the reader is able to further study the established literature on 
work and energy methods at a (post) graduate level and the reader is kindly invited to 
study these books. 

A special recognition goes to Coen Hartsuijker – in this book I frequently refer to his 
books and used with permission part of his Dutch notes – and to Cor van Eldik, the 
publisher at Bouwen met Staal, who helped me out with producing this book.

Hans Welleman
August 2016
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1 WORK AND ENERGY 
 
If an elastic body is loaded by external forces these forces produce work (figure 
1.1). The body is deformed and thus the point of application of the force will move. 
What is the result of this work? Inside the body deformations will occur and the 
external applied work will be stored inside the material as deformation or strain 
energy. If the body is unloaded, this energy will be released and the body returns to 
its original shape. This chapter deals with the relation between work and energy. 
 
 
 
 
 
 
 
 
 
 
1.1  Elastic body loaded by 
an external force.  
 
1.1 Work generated by forces 
Work is defined as the product of a force times the associated displacement. To 
elaborate on this the associated displacement Fu is shown in figure 1.2 as the  
displacement component along or associated to the applied force. In vector notation 
work is the dot product of the two vectors   F

!"
and   u
!

. 
 
 
 
 
 
 
1.2  Work done by a force.  
 
Work can also be negative. In that case the force and displacement are opposed to 
each other. From the figure it also becomes clear that a displacement perpendicular 
to the force will not contribute to the amount of work. 
 
1.2 Work generated by a couple (moment) 
A couple can also produce work since a couple is a system of forces. In figure 1.3 
both a force F and a couple T are applied at the indicated point of application. 
Assume only a rotation at the point of application. 

F

u

uF F

u

  Work and energy
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1.3  Work done by the 
moment of a couple.  
 
Both the force and the couple can be replaced by a single force F at a distance a 
from the original point of application. The work produced by the force due to a 
small rotation can be expressed in terms of the original couple T: 
 

T uA F u u T T
a a

ϕ= × = × = × = ×
  

Work done by a couple is therefore equal to the product of the moment of the 
couple times the angle of rotation. Although not proven here, this also holds for 
large rotations. 
The force will rotate due to rotations. In figure 1.3 this is simplified. If however the 
rotation of the force is taken into account the proof for large rotations can be found, 
this is left to the reader. 
 
1.3 Coordinate system and units 
In these notes primarily planar structures will be used. The coordinate system used 
is the x-z plane. This plane is shown in figure 1.4. A positive rotation around the y-
axis is denoted with ϕ. If no coordinate system is specified it is either not required 
or an x-z coordinate system is assumed. Forces are expressed in [kN], lengths in 
[m].   
 
 
 
 
 
1.4  Coordinate system.  
 
1.4 Work and deformation, Clapeyron’s law 
If work is applied to an elastic body the body will deform. During deformation the 
increase in work is stored as deformation or strain energy. Strain energy and work 
are both expressed in joule and are equivalent quantities [J = joule = newton × 
meter].  

T

F

F

u

a

ϕ ϕ

x-axis

z-axis

ϕ
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2 STRAIN ENERGY 
 
In this chapter the expression for the deformation or strain energy will be 
determined for each basic load carrying principle: 
– axial loading (tension or compression) 
– shear 
– bending 
– torsion 
 

For each load case one generalised stress (sectional force) is considered. (e.g. 
normal force N, shear force V, bending moment M and a torsional moment Mt). 
Apart from these basic (generalised) load cases we can also look to specific stress 
situations like: 
– normal stresses 
– shear stresses 
 
2.1 Axial loading 
A typical axial load case is shown in figure 2.1 An elastic material behaviour is 
assumed. 

  
2.1  Basic axial loading. 
 

The constitutive relation which relates the internal (generalised) stress (normal 
force N) to the deformation (strain) ε (epsilon) is presented with the N-ε diagram of 
figure 2.1.  
The small element with length dx is strained by the axial force N. The strain ε is 
shown in the force-strain diagram. An increase dε of this strain will elongate the 
element by: 
 

xl ddd ε=  
 

  Strain energy

normal
force

N

strain

area = N dε

ε

dε

NN

εdx

dx
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The axial force will hardly be affected by this increase in strain and is assumed to 
be constant. The change of work generated by this normal force can be expressed 
as: 
 

xNlNA dddd ε==  
 
Per unit of length this results in: 
 

εd
d
d N
x
A =

 
 
This work is stored as strain energy according to Clapeyron. The increase of strain 
energy per unit of length thus becomes: 
 

εd
d
dd N
x
AEv ==

 
 
For a specific normal force which belongs to a certain strain level the total amount 
of strain energy per unit of length can be computed with: 
 

* d d ( per unit of length is marked by *) v v
o o

E E N
ε ε

ε= =∫ ∫
 

 
In case of a linear elastic material behaviour the constitutive model by Hooke can 
be used: 
 

εEAN =  
 
Substituting this relation in the expression for the strain energy results in: 
 

∫∫ ====
ε

ε
ε

εεεεεε
0

2
2
1

0

2
2
1

0

* dd EAEAEAEAEv
  

This result can also be expressed in terms of the generalised stress and is then 
denoted as complementary strain energy Ec: 
 

2
* *

2v c
NE E
EA

= =
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3 CASTIGLIANO’S WORK THEOREMS 
 
In section 2.7 the deflection at the point of application of a force was computed 
based upon the strain energy stored in the entire beam. In this chapter a more 
general applicable method will be derived which was introduced by Cotterill and 
later Castigliano around 1870.  
 
3.1 Castigliano’s second theorem 
In figure 3.1 a beam is shown loaded by a series of concentrated loads.  
 
 
 
 
 
3.1  Beam loaded 
with a series of 
concentrated loads.  
 
All loads gradually increase up to the end value iF  generating a total external 
amount of work: 
 

1 1 1 1
2 2 2 2...ext a a b b c c x xA F u F u F u F u= + + + +  (3.1) 

 
In this expression the displacement at the point of application of each load is used. 
These displacements can however be expressed in terms of the total applied load as 
was shown in section 1.6. For the loaded beam shown in figure 3.1, this results in: 
 

xxxcxcbxbaxax

xcxcccbcbacac

xbxcbcbbbabab

xaxcacbabaaaa

FcFcFcFcu
FcFcFcFcu
FcFcFcFcu
FcFcFcFcu

++++=
++++=
++++=
++++=

...
...
...
...

 (3.2) 
 
The coefficients ijc  are the influence factors or components of the flexibility matrix 
as introduced by Maxwell. By differentiating the external work with respect to a 
specific load xF  at x we obtain: 
 

1 1 1 1 1
2 2 2 2 2...ext a b c x
a b c x x

x x x x x

A u u u uF F F u F
F F F F F

∂ ∂ ∂ ∂ ∂= + + + + +
∂ ∂ ∂ ∂ ∂  (3.3) 

 
Note. To obtain the last term the rules of differentiating have to be applied in a 
proper way, check this. 

  Castigliano's work theorems

ua ub uc
ux

Fb Fc FxFa

(3.2)

(3.1)

(3.3)
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The partial derivatives can be found using expression (3.2): 
 
 

xx
x

xxxcxcbxbaxa

x

x

cx
x

xcxcccbcbaca

x

c

bx
x

xbxcbcbbbaba

x

b

ax
x

xaxcacbabaaa

x

a

c
F

FcFcFcFc
F
u

c
F

FcFcFcFc
F
u

c
F

FcFcFcFc
F
u

c
F

FcFcFcFc
F
u

=
∂

++++∂
=

∂
∂

=
∂

++++∂
=

∂
∂

=
∂

++++∂
=

∂
∂

=
∂

++++∂
=

∂
∂

)...(

)...(

)...(

)...(

 (3.4) 
 
Substituting this result in expression (3.3) results in: 
 

1 1 1 1 1
2 2 2 2 2...ext
a ax b bx c cx x xx x

x

A F c F c F c F c u
F

∂ = + + + + +
∂  (3.5) 

 
According to Maxwell’s reciprocal theorem, see also section 1.6: 
 

xccx

xbbx

xaax

cc
cc
cc

=
=
=

 (3.6) 
 
Using this result in expression (3.5) we obtain: 
 

  

∂Aext
∂Fx

= 1
2 cxaFa +

1
2 cxbFb +

1
2 cxcFc + ...+ 1

2 cxx Fx +
1
2 ux

  1
2 ux

 (3.7) 

 
Expression (3.7) can be simplified as: 
 

ext
x

x

A u
F

∂ =
∂  (3.8) 

 
This result shows that differentiating the total external work with respect to a 
specific load will result in the associated displacement at the point of application of 
this specific load. This principle is known as the second theorem of Castigliano 
although Cotterill found this result a few years earlier [11].  
 

(3.4)

(3.5)

(3.6)

(3.8)

(3.7)
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4 ENERGY FUNCTIONS AND APPROXIMATIONS 
 
Castigliano’s theorems have been introduced in the previous chapter based on 
linear elasticity. In this chapter a more comprehensive approach will be introduced 
with help of energy functions in which also the validity of the previously found 
theorems is being discussed. An application of energy functions is the 
approximation method based upon minimum potential energy. With a few 
examples this method will be demonstrated in this chapter.  
 
4.1 Energy function 
Virtual work has been introduced in chapter 1 as an alternative description of the 
equations of equilibrium since zero virtual work contains the equations of 
equilibrium: 
 

0=Aδ  
 
In words this principle states that due to a kinematically admissible virtual 
displacement field the sum of all virtual work generated by all forces must be equal 
to zero.  
If a virtual displacement is considered as a small perturbation of an equilibrium 
situation the principle of virtual work states that the variation of the virtual work 
due to this perturbation is equal to zero. In fact this requires a stationary situation of 
the work function. This problem can be visualized with the following analogy. In 
figure 4.1 a ball is placed on a friction less path. This path can be described as a 
function. The function value is stationary for three indicated positions of the ball. 
 
 
 
 
 
 
 
 
 
 
 
4.1  Stationary position.  
 
The path of the ball can be regarded as an energy or work function. In the previous 
chapters we already have seen that these two are exchangeable quantities. We 
therefore introduce an energy potential function V. Figure 4.1 shows several 

  Energy functions and 
 approximations

x

pertubation

pertubation

stable equilibrium

V
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positions for which the potential function is stationary. The top left position is 
however not a stable position. For perturbations to the left the ball will not return to 
its original equilibrium position. The second position is better since this local 
extreme results in a stable equilibrium. However the position at the far right results 
in a stable position at the lowest value of the potential function. This latter aspect of 
the global minimum will be addressed later in this chapter. 
 
In order to ensure a stable equilibrium situation the energy function must be 
stationary at a minimum. This results in: 
 

2

2
d d0 and 0
d d
V V
x x
= >

  
The components of V are yet to be determined. From the conservation of energy it 
is known that work generated by forces will be transferred into movements, 
deformations and or heat. These are labelled by kinematic energy, strain energy 
and dissipation energy. For elastic materials all stored energy is released during 
unloading, therefore no dissipation occurs.  
According to the principle of conservation of energy the total amount of energy in a 
closed  environment remains constant: 
 
kin potE E constant+ =   

If statics is considered kinematic energy is of no concern since accelerations are not 
taken into account. The work generated by forces can only be stored as strain 
energy. This reduces the conservation of energy to: 
 
potE constant=  

 
The energy function we are looking for is in this particular case (statics and 
elasticity) a potential energy function. As a result of figure 4.1 a variation of the 
potential energy function should be equal to zero for all (kinematically) possible 
perturbations of state variables. Physically this can be regarded as a stationary 
energy level for small perturbations of state variables. Possible state variables will 
be demonstrated later in a few examples.  
 

The possible exchange of energy can only be between the contributions to the 
potential energy. On one hand there is energy from work generated by forces which 
is stored as strain energy in an elastic material. Both components can be regarded 
as potential energy. We therefore have to make a distinction between potential 
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5 INFLUENCE LINES 
 
In this chapter the concept of influence lines will be introduced. First the concept of 
influence lines will be explained followed by the description of tools to construct 
influence lines of statically determinate and indeterminate systems for both force and 
displacement quantities. The theory will be applied to numerous examples.  
 
5.1 Problem sketch and assumptions 
In courses on Statics the focus is primarily on finding the force distribution in a 
structure as a result of a static load at a fixed location. This force distribution can be 
visualised using normal-, shear- and moment-diagrams. If the position of the load is 
variable as shown in figure 5.1 there is a problem in visualising the force distribution.  
 
 
 
 
 
 
 
 
5.1  Unit load that moves 
over the structure.  
 
To find the magnitude of a force or displacement at a fixed position depending on the 
location of the external load the concept of influence line is introduced. An influence 
line gives the value of a quantity in a specific point as a function of the location of a 
moving unit load. 
The unit load is a concentrated load with magnitude 1.0. Influence lines will be used to 
find the most unfavourable position of the load for a certain quantity in statically 
determinate and statically indeterminate systems. Quantities of interest could be: 
– a support reaction 
– a rotation at a certain point  
– an internal moment in a certain cross-section 
– a deflection at a specific point 
– a shear force in a specific cross-section 
 
In this chapter we will discuss how to determine influence lines for statically 
determinate and indeterminate systems. In the last part the most unfavourable position 
of the load for a certain quantity will be determined. For some applications only the 
shape of the influence line is important. This is referred to as the qualitative aspect of 
the influence line. In other cases also the exact magnitude of the influence factor is 
relevant. This latter aspect is referred to as the quantitative aspect of the influence line.  

  Influence lines

1 kN

BA

l

AV BV
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5.1.1 Introduction of influence lines for force quantities 
The concept of influence lines is introduced with the following beam structure. 
The beam in figure 5.2 is loaded with a concentrated load of 1.0 kN that moves from the 
left support to the right support. This moving load is denoted with the horizontal dotted 
arrow. 
 
 
 
 
 
 
 
 
 
5.2  Moving unit load on a simply 
supported beam.  
 
The dynamic effects caused by the moving load are neglected completely. The problem 
is considered to be a static problem. Using this example we will introduce the influence 
lines for force quantities: 
– influence lines for support reactions AV and BV (positive reactions assumed upwards) 
– influence line for (internal) shear force VC  
– influence line for (internal) moment MC  
 
Influence line for support reactions at A and B 
The question is how the support reactions AV and BV are related to the position of the 
moving load. Equilibrium yields to: 

V V
( ) 1.0 1.0l x xA B

l l
− × ×= =

 

The distribution of the support reaction at A and B depending on the position of the load 
x is shown in figure 5.3. 
These graphs are called the influence lines for AV and BV. To determine the support 
reaction AV for a load F placed somewhere on the structure we have to multiply the 
influence factor found from the influence line at that location with the magnitude of the 
concentrated load. A load of 50 kN at 2.5 meters from the left support results in a 
support reaction AV at A of: 

V 0.75 50 37.5 kNA = × =  

This support reaction acts upwards. It is important to take care of the signs and to pay 
attention to the definition of the chosen coordinate system. Here we have chosen to plot 
the positive values (upwards acting) of the support reaction downwards in the graph. 

1 kN

BA C

2.5 m

AV BV

l = 10 m


